CS395T: Foundations of Machine Learning for Systems Researchers

Fall 2025

Lecture 9: **Baseline Functions in Policy Gradient Methods**

Game plan for policy gradient lectures

Deterministic and stochastic/probabilistic control

 \circ Policy network and its parameters θ

Basic policy gradient method: REINFORCE

- Monte Carlo sampling to estimate gradient of expected return
- \circ Suffers from high variance \rightarrow requires many samples

Baseline methods for reducing variance

- Based on control variates methods from Monte Carlo literature
- Use advantage in place of reward
- Actor-critic methods

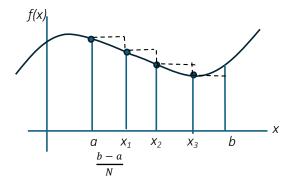
Trust-region methods for improving stability and sample efficiency

- \circ Ensure updates to θ are small
- Trust Region Policy Optimization (TRPO): KL-divergence
- Proximal Policy Optimization (PPO): bounding box around current values

Control variates in Monte Carlo Methods

Review: Monte Carlo Integration (I)

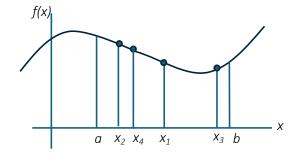
$$\hat{A}_{FE}(f;N) = (b-a) * \underbrace{\frac{1}{N} \sum_{i=0}^{N-1} f(x_i)}_{average \ of \ f(x_i) \ values} \text{ where } x_i = a + \frac{b-a}{N} * i$$



Reinterpret forward-Euler

Generate x_i values using arithmetic progression Take average of $f(x_i)$ values and multiply by (b-a)

$$\hat{A}_{MC}(f;N) = (b-a) * \underbrace{\frac{1}{N} \sum_{i=0}^{N-1} f(X_i)}_{average \ of \ f(X_i) \ values} \text{ where } X_i \sim U(a,b)$$



Monte Carlo integration (capital letters for random variables) Generate X_i values by sampling uniform distribution U(a,b)Take average of $f(X_i)$ values and multiply by (b-a)

Review: Monte Carlo Integration (II)

$$\hat{A}_{MC}(f; N) = (b - a) * \underbrace{\frac{1}{N} \sum_{i=0}^{N-1} f(X_i)}_{average \ of \ f(X_i) \ values} \text{ where } X_i \sim U(a, b)$$

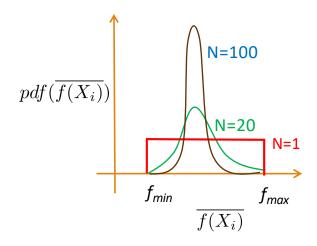
Unbiased estimator

$$\mathbb{E}_{X_i \sim U(a,b)} \left[\hat{A}_{MC}(f;N) \right] = \frac{b-a}{N} \sum_{i=0}^{N-1} \int_a^b \underbrace{\frac{1}{b-a}}_{\text{pdf of U[a,b]}} f(X_i) dX_i = \int_a^b f(x) dx \right]$$

$$\lim_{N \to \infty} \hat{A}_{MC}(f;N) = \int_a^b f(x)dx \quad \text{(Law of large numbers)}$$

$$\sigma_U^2(\hat{A}_{MC}(f;N)) = \frac{(b-a)^2}{N} \sigma_U^2(f) = O(\frac{\sigma_U^2(f)}{N})$$

If f has high variance, need lots of samples to obtain accurate estimate



Convergence in probability

Baseline Functions for Reducing Variance

$$h(x) = \underbrace{f(x)}_{\text{function of interest}} - \underbrace{g(x)}_{\text{easy to compute}} + \underbrace{\mathbb{E}[g(x)]}_{\text{easy to compute}}$$

Distribution for expectations and variances: $U \sim [0, 1]$

 $\mathbb{E}[g(x)]$ should be a good approximation for $\mathbb{E}[f(x)]$

Special case of *control variates* in Monte Carlo literature

Intuition:

- (i) $\mathbb{E}[h(x)] = \mathbb{E}[f(x)]$
- (ii) $\mathbb{E}[g(x)]$ is computed analytically
- (ii) $\mathbb{E}[f(x)-g(x)]$ provides correction to $\mathbb{E}[g(x)]$ and is estimated by sampling

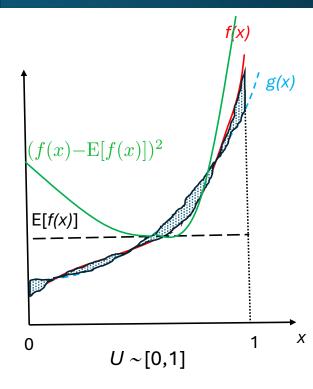
$$\mathbb{E}[f(x)] = \mathbb{E}[h(x)] \approx \left(\frac{1}{N} \sum_{i=1}^{N} f(x_i) - g(x_i)\right) + \mathbb{E}[g(x)]$$

Variance: $\sigma^2(h(x)) = \sigma^2(f(x)) + \sigma^2(g(x)) - 2*Cov(f(x), g(x))$

Win if $Cov(f(x), g(x)) > \frac{1}{2}\sigma^2(g(x))$ (f(x), g(x)) are strongly correlated)

Note: variance can *increase* if g(x) is badly chosen!

g(x) is baseline for computing $\mathbb{E}[f(x)]$



Optimal Baseline

$$h(x) = \underbrace{f(x)}_{\text{function of interest easy to compute easy to compute}} - \underbrace{\mathbb{E}[g(x)]}_{\text{function of interest easy to compute easy to compute}}$$

$$\text{Variance: } \sigma^2(h(x)) = \sigma^2(f(x)) + \sigma^2(g(x)) - 2 * Cov(f(x), g(x))$$

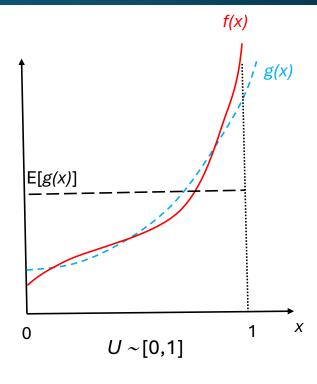
Optimal baseline: g(x) that minimizes variance $\sigma^2(h(x))$, is easy to compute, and whose expectation can be computed analytically!

Hard to solve in general but we may be able to find best function in set of parameterized functions $g(x; \phi)$ for use as baseline

Common baseline in policy gradients: constant

Paradox: variance of h(x) does not decrease if g(x)=constant!

Resolution to paradox: see later



g(x) is a baseline for f(x)

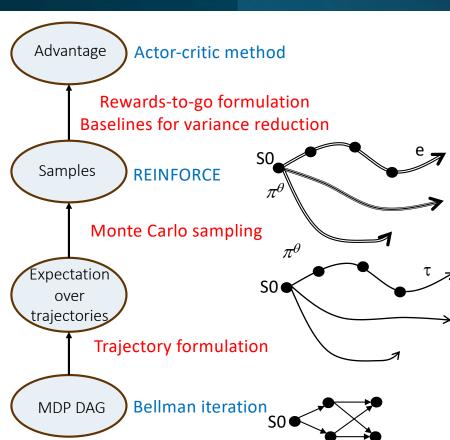
Baselines in Policy Gradients

Key steps

 $\nabla_{\theta} V^{\theta}(S0) \approx \frac{1}{|M|} \sum_{e \in M \sim \pi^{\theta}} \left(R(e) \nabla_{\theta} \log \pi^{\theta}(e) \right)$ M: multiset of samples (realizations of trajectories)

$$V^{\theta}(S0) = \underset{\tau \sim \pi^{\theta}}{\mathbb{E}} [R(\tau)]$$
$$\nabla_{\theta} V^{\theta}(S0) = \underset{\tau \sim \pi^{\theta}}{\mathbb{E}} [R(\tau) \nabla_{\theta} \log \pi^{\theta}(\tau)]$$
$$\theta = \theta + \eta \nabla_{\theta} V^{\theta}(S0)$$

 $V^{\theta}(S0)$ MDP DAG Bellman iteration



Review: policy gradient and REINFORCE

$$\tau: \underbrace{\begin{array}{c} S \\ A_0 \\ \pi^{\theta}(A_0|S0)^*P(S_0,A_0,S_1) \\ \end{array}}_{\pi^{\theta}(A_0|S0)^*P(S_0,A_0,S_1)} \underbrace{\begin{array}{c} S_1 \\ \pi^{\theta}(A_1|S_1)^*P(S_1,A_1,S_2) \\ \end{array}}_{\pi^{\theta}(\tau)} = \underbrace{\prod_{i=0}^{T-1} \pi^{\theta}(A_i|S_i) * P(S_i,A_i,S_{i+1})}_{\pi^{\theta}(\tau)} = \underbrace{\prod_{i=0}^{T-1} \pi^{\theta}(A_i|S_i) * \underbrace{\prod_{i=0}^{T-1} P(S_i,A_i,S_{i+1})}_{P(\tau)} \\ \end{array}}_{\pi^{\theta}(\tau)}$$

$$V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) R(\tau) \text{ (where } R(\tau) = \text{sum of (discounted) rewards on trajectory)}$$

$$\nabla_{\theta} V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \nabla_{\theta} \rho(\tau) * R(\tau) = \sum_{\tau \sim \pi^{\theta}} P(\tau) * \nabla_{\theta} \pi^{\theta}(\tau) * R(\tau) = \sum_{\tau \sim \pi^{\theta}} P(\tau) * \pi^{\theta}(\tau) * \frac{\nabla_{\theta} \pi^{\theta}(\tau)}{\pi^{\theta}(\tau)} * R(\tau)$$

$$= \sum_{\tau \sim \pi^{\theta}} \rho(\tau) * \nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) = \mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)]$$

REINFORCE algorithm: M is multiset of samples

$$\nabla_{\theta} V^{\theta}(S0) \approx \frac{1}{|M|} \sum_{e \in M \sim \pi^{\theta}} \left(R(e) \nabla_{\theta} \log \pi^{\theta}(e) \right)$$
$$\theta = \theta + \eta \nabla_{\theta} V^{\theta}(S0)$$

Barto & Sutton REINFORCE:

- samples are episodes
- compute state valuations for all states

Review: example

Bellman:
$$V(S0) = b0*(r0 + (p1*r1 + p2*r2))$$
$$= p0*r0 + p0*p1*r1 + p0*p2*r2$$

Trajectories:

$$V(S0) = \boxed{p0*p1*(r0+r1) + p0*p2*(r0+r2)}$$

$$= p0*p1*r0 + p0*p1*r1 + p0*p2*r0 + p0*p2*r2$$

$$= p0*r0*\underbrace{(p1+p2)}_{=1} + p0*p1*r1 + p0*p2*r2$$

$$= p0*r0 + p0*p1*r1 + p0*p2*r2$$

$$\nabla_{\theta}V(S0) = p0*p1*\underbrace{(\nabla_{\theta}\log(p0*p1))}_{\nabla_{\theta}log\pi^{\theta}(\tau_{1})} *\underbrace{(r0+r1)}_{R(\tau_{1})} + p0*p2*\underbrace{(\nabla_{\theta}\log(p0*p2))}_{\nabla_{\theta}log\pi^{\theta}(\tau_{2})} *\underbrace{(r0+r2)}_{R(\tau_{2})}$$

$$\theta \leftarrow \theta + \eta V_{\theta} V(S0)$$

Gradient of expected return: other formulations

Notation: $\tau[i,j] = \text{segment of trajectory between steps } i \text{ and } j \text{ inclusive}$

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi^{\theta}} \left[R(\tau) \right] = \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) \right]}_{\text{trajectory formulation}} \tag{1}$$

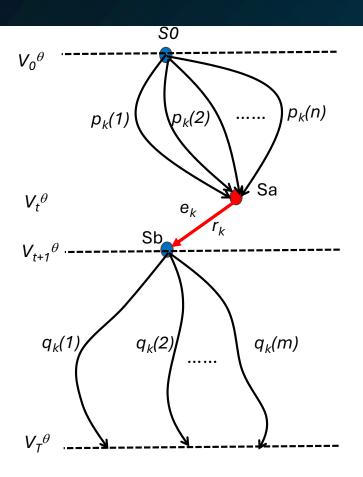
$$\tau : \bullet \xrightarrow{r_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet \\ \xrightarrow{p_0} \xrightarrow{p_1} \xrightarrow{p_2} \\ \nabla_{\theta} \log p_0 \ \nabla_{\theta} \log p_1 \ \nabla_{\theta} \log p_2$$

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} R(\tau[t,t]) \nabla_{\theta} \log \pi^{\theta}(\tau[0,t]) \right]}_{\text{l. f.}}$$
(2)

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi^{\theta}(\tau[t, t]) R(\tau[t, T-1]) \right]}_{\text{rewards-to-go formulation}}$$
(3)

Formulations (2) and (3) are obviously equivalent: each reward is multiplied by log prob's earlier in trajectory and summed

Proof: trajectory and rewards formulations equivalent



Grad-Log-Pi Lemma:
$$\mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau))] = 0$$

Proof:
$$\sum_{\tau \sim \pi^{\theta}} \rho(\tau) = 1 \Rightarrow \sum_{\tau \sim \pi^{\theta}} \nabla_{\theta} \rho(\tau) = 0 \Rightarrow \sum_{\tau \sim \pi^{\theta}} P(\tau) \nabla_{\theta} \pi(\tau) = 0 \Rightarrow \sum_{\tau \sim \pi^{\theta}} P(\tau) \pi^{\theta}(\tau) \nabla_{\theta} log(\pi(\tau)) = 0$$

$$\Rightarrow E_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log \pi^{\theta}(\tau)] = 0$$

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi^{\theta}} \left[R(\tau) \right] = \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) \right]}_{\text{trajectory formulation}}$$

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} R(\tau[t,t]) \nabla_{\theta} \log \pi^{\theta}(\tau[0,t]) \right]}_{\text{rewards formulation}}$$

$$+ \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} R(\tau[t,t]) \nabla_{\theta} \log \pi^{\theta}(\tau[t+1,T-1]) \right]}_{-0}$$

Example

$$\begin{aligned} & \text{Bellman:} & V(S0) = \boxed{p0*(r0 + (p1*r1 + p2*r2))} \\ & = p0*r0 + p0*p1*r1 + p0*p2*r2 \end{aligned} \\ & \text{Trajectory:} & V(S0) = \boxed{p0*p1*(r0+r1) + p0*p2*(r0+r2)} \\ & = p0*p1*r0 + p0*p1*r1 + p0*p2*r0 + p0*p2*r2 \end{aligned} \\ & = p0*r0* \underbrace{(p1+p2)}_{=1} + p0*p1*r1 + p0*p2*r2 \end{aligned} \\ & = p0*r0 + p0*p1*r1 + p0*p2*r2 \end{aligned} \\ & = p0*r0 + p0*p1*r1 + p0*p2*r2 \end{aligned}$$

$$\begin{aligned} & p1,r1 \\ & p2,r2 \\ & p1+p2 = 1 \\ & \nabla p1 + \nabla p2 = 0 \end{aligned}$$

$$\end{aligned}$$

$$\nabla V(S0) = \boxed{p0*p1*(\nabla \log p0 + \nabla \log p1)(r0+r1) + p0*p2*(\nabla \log p0 + \nabla \log p2)(r0+r2)}$$

Reward formulation:

$$\nabla V(S0) = p0 * p1 * \boxed{ (r0 * \nabla \log p0 + r1 * (\nabla \log p0 + \nabla \log p1)) } + p0 * p2 * \boxed{ (r0 * \nabla \log p0 + r2 * (\nabla \log p0 + \nabla \log p2)) }$$

Rewards-to-go formulation:

$$\nabla V(S0) = p0 * p1 * \boxed{((r0 + r1) * \nabla \log p0 + r1 * \nabla \log p1))} + p0 * p2 * \boxed{((r0 + r2) * \nabla \log p0 + r2 * \nabla \log p2))}$$

Sample gradient and variance

$$V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) R(\tau)$$

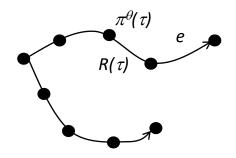
$$\nabla_{\theta} V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \nabla_{\theta} \rho(\tau) * R(\tau) = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) * \nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) = \mathbb{E}_{\tau \sim \pi^{\theta}} \left[\underbrace{\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)}_{sample\ gradient\ SG^{\theta}(\tau)} \right]$$

Interpretation of $\nabla_{\theta} V^{\theta}[S0]$: expectation of a random variable SG^{θ} (for Sample Gradient) that takes value $\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)$ with probability $\rho(\tau)$ for $\tau \sim \pi^{\theta}$

Variance of SG^{θ} : assume θ is scalar (otherwise we need covariance matrices)

$$\sigma^2(SG^{\theta}) = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) * (\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau))^2 - \left(\sum_{\tau \sim \pi^{\theta}} \rho(\tau) * \nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)\right)^2$$

Intuition for θ updates in REINFORCE



$$\nabla_{\theta} V^{\theta}(S0) \approx \frac{1}{|M|} \sum_{e \in M \sim \pi^{\theta}} \left(R(e) \nabla_{\theta} \log \pi^{\theta}(e) \right)$$

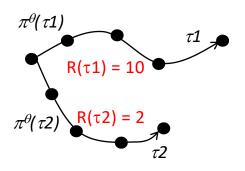
Update to gradient from sample $e \propto R(e) \nabla_{\theta} \log \pi^{\theta}(e)$ $\theta = \theta + \eta \nabla_{\theta} V^{\theta}(S0)$

Claim: $R(\tau) > 0$: update to θ makes τ more probable $R(\tau) < 0$: update to θ makes τ less probable

Proof: Assume θ is scalar; proof for vector θ applies proof below dimension by dimension. Assume $R(\tau)>0$, $\nabla_{\theta}\pi^{\theta}(\tau)>0$; proof for other cases is similar.

 $\nabla_{\theta} \pi^{\theta}(\tau) > 0 \Rightarrow \nabla_{\theta} \log \pi^{\theta}(\tau) > 0 \Rightarrow R(\tau) * \nabla_{\theta} \log \pi^{\theta}(\tau) > 0$ $\Rightarrow \tau$ samples push $\nabla_{\theta} V^{\theta}(S0)$ higher $\Rightarrow \theta$ is pushed higher. Since $\nabla_{\theta} \pi^{\theta}(\tau) > 0$, this implies $\pi^{\theta}(\tau)$ is pushed higher.

Inefficiency in REINFORCE



$$\nabla_{\theta} V^{\theta}(S0) \approx \frac{1}{|M|} \sum_{e \in M \sim \pi^{\theta}} \left(R(e) \nabla_{\theta} \log \pi^{\theta}(e) \right)$$

Update to gradient from sample $e \propto R(e) \nabla_{\theta} \log \pi^{\theta}(e)$ $\theta = \theta + \eta \nabla_{\theta} V^{\theta}(S0)$

 $R(\tau) > 0$: trajectory becomes more probable $R(\tau) < 0$: trajectory becomes less probable

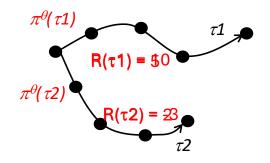
Gradient ascent should converge to θ that maximizes $\pi^{\theta}(\tau 1)$

However, whenever $\tau 2$ is sampled, it pulls π^{θ} to itself since $R(\tau 2) > 0$.

Result: θ updates are noisy, and convergence is slow.

Intuitively, REINFORCE has no memory of past samples except to extent they are incorporated implicitly into $\pi^{ heta}$

Intuitive idea of constant baseline



$$\nabla_{\theta} V^{\theta}(S0) \approx \frac{1}{|M|} \sum_{e \in M \sim \pi^{\theta}} \left(R(e) \nabla_{\theta} \log \pi^{\theta}(e) \right)$$

Update to gradient from sample $e \propto R(e) \nabla_{\theta} \log \pi^{\theta}(e)$ $\theta = \theta + \eta \nabla_{\theta} V^{\theta}(S0)$

 $R(\tau) > 0$: trajectory becomes more probable $R(\tau) < 0$: trajectory becomes less probable

Idea: subtract a constant b(aseline) between 2 and 10 (say 5) from both rewards.

Now $\tau 2$ has negative reward so it repels probabilities while $\tau 1$ still attracts probabilities

Result: θ updates are less noisy, and convergence is faster

If b > 10 or b < 2, variance increases!

Question: is there an optimal baseline value for reducing variance of gradient estimates?

One guess: optimal $b = (R_{max} - \varepsilon)$ where ε is some small constant (turns out to be wrong!)

Two main results (I)

$$V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) R(\tau)$$

$$\nabla_{\theta} V^{\theta}[S0] = \sum_{\tau \sim \pi^{\theta}} \nabla_{\theta} \rho(\tau) * R(\tau) = \sum_{\tau \sim \pi^{\theta}} \rho(\tau) * \nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) = \mathbb{E}_{\tau \sim \pi^{\theta}} \left[\underbrace{\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)}_{sample\ gradient\ SG^{\theta}(\tau)} \right]$$

(1) Introducing a constant baseline does not change $\nabla_{\theta}V^{\theta}[S0]$. Proof:

$$\mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau)) * (R(\tau) - b)] = \mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)] - b * \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau))}_{\text{from Grad-Log-Pi Lemma}}] = \mathbb{E}_{\tau \sim \pi^{\theta}} [\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau)]$$

Point: updates to θ for gradient ascent do not change if we introduce a constant baseline.

Two main results (II)

$$\sigma^2(SG^\theta;b) = \sum_{\tau \sim \pi^\theta} \rho(\tau) * \left(\nabla_\theta log(\pi^\theta(\tau)) * (R(\tau) - b) \right)^2 - \left(\sum_{\tau \sim \pi^\theta} \rho(\tau) * \nabla_\theta log(\pi^\theta(\tau)) * R(\tau) \right)^2$$

(2) Differentiating $\sigma^2(.)$ wrt b gives optimal baseline constant b^* :

$$b^* = \frac{\mathbb{E}_{\tau \sim \pi^{\theta}}[R(\tau)(\nabla_{\theta}log\pi^{\theta}(\tau))^2]}{\mathbb{E}_{\tau \sim \pi^{\theta}}[(\nabla_{\theta}log\pi^{\theta}(\tau))^2]}$$

Optimal b is convex combination of trajectory rewards $R(\tau)$

Generalization to multiple parameters: one approach is to ignore off-diagonal terms in covariance matrix and use different baseline values for each dimension of gradient vector (intuitively, we minimize variance in each dimension separately)

Advantage

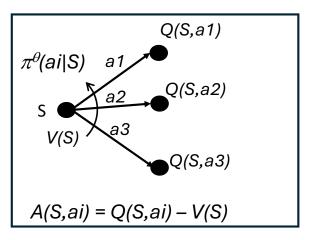
In practice, we use V(S) as baseline

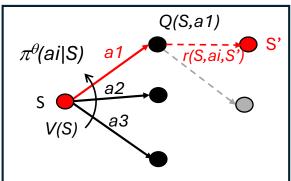
- It too is convex combination of Q values
- Intuition: V(S) is like class average in relative grading
- Advantage A(S,ai) = Q(S,ai) − V(S)

Intuition: using V(S) as a baseline adds "history-sensitivity" to gradient updates. If we sampled better trajectories at S the last few times we visited S, reduce gradient update from current sample.

Some implementations approximate A(S,ai) by TD(0) error

$$A(S,ai) \approx r(S,ai,S') + \gamma V(S') - V(S)$$
Approximation
to $Q(S,ai)$





Actor-critic mechanism

Actor NN updates θ by gradient ascent using V values estimated by the critic

Critic NN estimates V values which serve as baseline

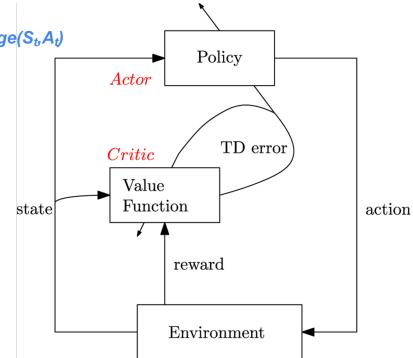
TD error: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ Approximation to Advantage($S_t A_t$)

Critic update: $w \leftarrow w + \alpha_w \delta_t \nabla_w V(S_t; w)$

Actor update: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)\delta_t$

Algorithm 3 Actor-Critic Method

- 1: Initialize policy parameter $\theta \in R^d$
- 2: Initialize value function parameter $w \in \mathbb{R}^d$
- 3: for each episode do
- 4: for each step of the episode do
- 5: Take action A_t according to π_{θ}
- 6: Observe reward R_{t+1} and next state S_{t+1}
- 7: $\delta_t \leftarrow R_{t+1} + \gamma V(S_{t+1}; w) V(S_t; w)$ Calculate TD error
- 8: $w \leftarrow w + \alpha_w \delta_t \nabla_w V(S_t; w)$ Update the value function
- 9: $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)\delta_t$ Update policy parameters
- 10: end for
- 11: end for



Sutton & Barto REINFORCE with Value Baseline

Algorithm 2 REINFORCE with Baseline

```
1: Initialize policy parameter \theta \in R^d
2: Initialize baseline parameter w \in R^d
3: for each episode do
4: Generate an episode S_0, A_0, R_1, \ldots, S_T, A_T, R_{T+1} following \pi_\theta
5: for t = 0 to T do
6: G_t \leftarrow \sum_{k=t}^T \gamma^{k-t} R_{k+1}
7: \delta_t \leftarrow G_t - V(S_t; w) Calculate advantage
8: \theta \leftarrow \theta + \alpha \gamma^t \delta_t \nabla_\theta \log \pi_\theta(A_t|S_t) Update the policy parameter \theta using rewards (advantage)-to-go
9: w \leftarrow w + \alpha_w \delta_t \nabla_w V(S_t; w) Update the Value NN parameter w
10: end for
```

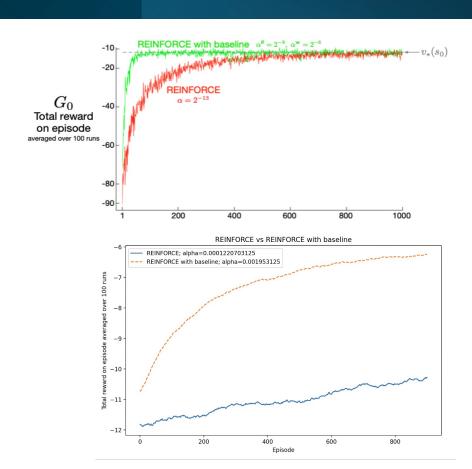
From Sutton & Barto

Experiments

Learning Rate for Policy Parameters (α_{θ}) : 2^{-13}

Learning Rate for Policy Parameters (α_{θ}) : 2^{-9} Learning Rate for Baseline Parameters (α_w) : 2^{-6}

Baseline reduces variance, allowing REINFORCE with baseline to converge faster.



Key concepts covered in lecture

Control variate method for reducing variance in Monte Carlo sampling

o In RL, usually only constant baseline functions

Basic policy gradient method: REINFORCE

- Trajectory formulation, rewards, rewards-to-go
- Sample gradients
- Monte Carlo sampling to estimate gradient of expected return
- \circ Suffers from high variance \rightarrow requires many samples

Baseline functions for reducing variance: usually constant in RL

- Optimal baseline
- Advantage: use state valuations as baselines
- Actor-critic mechanism
 - Critic NN: estimates state valuations
 - Actor NN: policy network, uses state valuations from actor to compute advantage

Other presentations: much more complex

Based on continuous state, continuous action MDP's

• End up with double integrals instead of double summations

Continuous tasks instead of finite-horizon tasks

- Unbounded trajectories and infinite sums
- Need ideas like continuity

Start with trajectory formulation

Difficult to get intuition for rewards and rewards-to-go formulations

Assume start state can be any state, not a fixed state

- Need concepts like state occupancy distribution in Markov processes
- Easy to add to our narrative once simpler formulation is clear

Visualization

Unrolled MDP for probabilistic policies

References

Lil'Log: Policy Gradient Algorithms: long blog post on policy gradient algorithms. Well-written.

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory, Algorithms, and Implementations, Matthias Lehmann. Considers continuous state, continuous action MDPs so lots of double integrals!

https://arxiv.org/pdf/2401.13662

Variance Reduction in Policy Gradient, David Rosenberg NYU-CDS DS-GA 3001 lecture notes. Approaches subject from data science/statistics perspective.

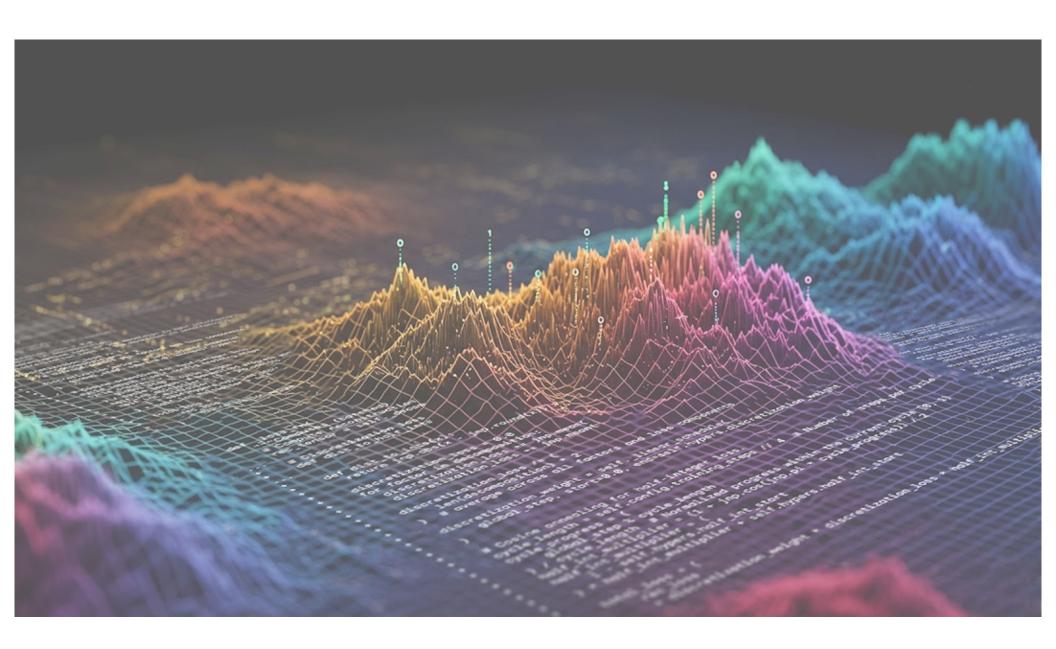
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf

Deep Reinforcement Learning, Sergey Levine, CS 285 Berkeley. Course by one of the leaders in the field.

https://rail.eecs.berkeley.edu/deeprlcourse/

OpenAl Spinning Up. Introduction to Policy Optimization. Has links to libraries and systems resources.

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html



Gradient of expected return: other formulations

$$\tau: \bullet \xrightarrow{r_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet \\ \xrightarrow{p_0} \xrightarrow{p_1} \xrightarrow{p_2} \\ \nabla_{\theta} \log p_0 \ \nabla_{\theta} \log p_1 \ \nabla_{\theta} \log p_2$$

$$\tau : \bullet \xrightarrow{p_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet \\ \xrightarrow{p_0} \xrightarrow{p_1} \xrightarrow{p_2} \xrightarrow{p_2} \bullet \\ \nabla_{\theta} \log p_0 \quad \nabla_{\theta} \log p_1 \quad \nabla_{\theta} \log p_2$$

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi^{\theta}} \left[R(\tau) \right] = \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\nabla_{\theta} log(\pi^{\theta}(\tau)) * R(\tau) \right]}_{\text{trajectory formulation}}$$

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} R(\tau[t,t]) \nabla_{\theta} \log \pi^{\theta}(\tau[0,t]) \right]}_{\text{rewards formulation}} + \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} R(\tau[t,t]) \nabla_{\theta} \log \pi^{\theta}(\tau[t+1,T-1]) \right]}_{\text{Prove this is } = 0}$$

Gradient of expected return: other formulations

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi^{\theta}} \left[R(\tau) \right] = \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\left(\sum_{t=0}^{T-1} r_{t} \right) \cdot \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi^{\theta} (A_{t} | S_{t}) \right) \right]}_{\text{trajectory formulation}} \tag{1}$$

$$\tau : \bullet \xrightarrow{r_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet \\ \xrightarrow{p_0} \xrightarrow{p_1} \xrightarrow{p_2} \\ \nabla_{\theta} \log p_0 \ \nabla_{\theta} \log p_1 \ \nabla_{\theta} \log p_2$$

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} \left(r_t \sum_{t'=0}^{t} \nabla_{\theta} \log \pi^{\theta} (A_t' | S_{t'}) \right) \right]}_{}$$
(2)

$$\tau : \bullet \xrightarrow{r_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet$$

$$\xrightarrow{p_0} \xrightarrow{p_1} \xrightarrow{p_2} \xrightarrow{p_2}$$

$$\nabla_{\theta} \log p_0 \quad \nabla_{\theta} \log p_1 \quad \nabla_{\theta} \log p_2$$

$$= \underbrace{\mathbb{E}_{\tau \sim \pi^{\theta}} \left[\sum_{t=0}^{T-1} \left(\nabla_{\theta} \log \pi^{\theta} (A_t | S_t) \left(\sum_{t'=t}^{T-1} r_{t'} \right) \right) \right]}_{\text{rewards-to-go formulation}}$$
(3)

$$\tau : \bullet \xrightarrow{r_0} \xrightarrow{r_1} \xrightarrow{r_2} \bullet \\ \nabla_{\theta} \log p_0 \xrightarrow{p_1} \xrightarrow{p_2} \nabla_{\theta} \log p_1 \xrightarrow{\nabla_{\theta}} \nabla_{\theta} \log p_2$$

Formulations (2) and (3) are obviously equivalent: each reward is multiplied by log prob's earlier in trajectory and summed