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Game plan for policy gradient lectures

Deterministic and stochastic/probabilistic control
○ Policy network and its parameters q

Basic policy gradient method: REINFORCE
○ Monte Carlo sampling to estimate gradient of expected return
○ Suffers from high variance ® requires many samples

Baseline methods for reducing variance
○ Based on control variates methods from Monte Carlo literature
○ Use advantage in place of reward
○ Actor-critic methods

Trust-region methods for improving stability and sample efficiency
○ Ensure updates to q are small
○ Trust Region Policy Optimization (TRPO): KL-divergence
○ Proximal Policy Optimization (PPO): bounding box around current values



Control variates
in

Monte Carlo Methods



Review: Monte Carlo Integration (I)

Reinterpret forward-Euler
Generate xi values using arithmetic progression
Take average of f(xi) values and multiply by (b-a)
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Monte Carlo integration (capital letters for random variables)
   Generate Xi values by sampling uniform distribution U(a,b)
   Take average of f(Xi) values and multiply by (b-a)
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Review: Monte Carlo Integration (II)

fmin fmax

N=1
N=20

N=100

Convergence in probability

If f has high variance, need lots of samples to obtain accurate estimate 

Unbiased estimator



Baseline Functions for Reducing Variance
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Optimal Baseline
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g(x) is a baseline for f(x)



Baselines 
in

Policy Gradients



Key steps

 
 

Expectation 
over 

trajectories

MDP DAG

Trajectory formulation

Samples

Monte Carlo sampling

Advantage

Rewards-to-go formulation
Baselines for variance reduction

REINFORCE

Bellman iteration

Actor-critic method
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Review: policy gradient and REINFORCE 

S
0
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……..t:

Barto & Sutton REINFORCE: 
- samples are episodes
-  compute state valuations for all states



Review: example

 
 

Bellman:
 
Trajectories:
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Gradient of expected return: other formulations
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Formulations (2) and (3) are obviously equivalent:
each reward is multiplied by log prob’s earlier in trajectory and summed



Proof: trajectory and rewards formulations equivalent
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Example



Sample gradient and variance

  

 



Intuition for q updates in REINFORCE

 
 

Claim: R(t) > 0:  update to q makes t more probable
            R(t) < 0 : update to q makes t less probable
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Inefficiency in REINFORCE

R(t) > 0:  trajectory becomes more probable
R(t) < 0 : trajectory becomes less probable

  

 

 

pq(t1)
t1

R(t1) = 10

pq(t2)
t2

R(t2) = 2

Gradient ascent should converge to q  that maximizes pq(t1)

However, whenever t2 is sampled, it pulls  pq to itself since R(t2) > 0. 

Result: q  updates are noisy, and convergence is slow.  

Intuitively, REINFORCE has no memory of past samples except to extent they are incorporated implicitly into pq



Intuitive idea of constant baseline

R(t) > 0:  trajectory becomes more probable
R(t) < 0 : trajectory becomes less probable

  

 

 

pq(t1) t1

R(t1) = 10

pq(t2)

t2

R(t2) = 2

Idea: subtract a constant b(aseline) between 2 and 10 (say 5) from both rewards.

Now t2 has negative reward so it repels probabilities while t1 still attracts probabilities

Result: q updates are less noisy, and convergence is faster

If b > 10 or b < 2, variance increases!

Question: is there an optimal baseline value for reducing variance of gradient estimates?

One guess: optimal b = (Rmax - e )  where e is some small constant    (turns out to be wrong!)

R(t1) = 5

R(t2) = -3



Two main results (I)

  

 

Point: updates to q for gradient ascent do not change if we introduce a constant baseline.



Two main results (II)

  

 



Advantage

  

 

  

 

  

     

 

In practice, we use V(S) as baseline
       • It too is convex combination of Q values
       •  Intuition: V(S) is like class average in relative grading
       

Intuition: using V(S) as a baseline adds “history-sensitivity” to 
gradient updates. If we sampled better trajectories at S the 
last few times we visited S,  reduce gradient update from 
current sample. 

 Some implementations approximate A(S,ai) by TD(0) error

       A(S,ai) ≈ r(S,ai,S’) + γV(S′)−V(S)
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A(S,ai) = Q(S,ai) – V(S)
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• Advantage A(S,ai) = Q(S,ai) – V(S)



Actor-critic mechanism

  

 

  

 

Actor NN updates q by gradient ascent using V values estimated by the critic

Critic NN estimates V values which serve as baseline

Calculate TD error
Update the value function
Update policy parameters

Approximation to Advantage(St,At)



Sutton & Barto REINFORCE with Value Baseline

  

 

  

 

  

 

Update the policy parameter θ using rewards (advantage)-to-go 
Update the Value NN parameter w

Calculate advantage

From Sutton & Barto



Experiments

  

 

  

 

  

 

Baseline reduces variance, allowing 
REINFORCE with baseline to converge faster.



Key concepts covered in lecture

Control variate method for reducing variance in Monte Carlo sampling
○ In RL, usually only constant baseline functions

Basic policy gradient method: REINFORCE
○ Trajectory formulation, rewards, rewards-to-go 
○ Sample gradients
○ Monte Carlo sampling to estimate gradient of expected return
○ Suffers from high variance ® requires many samples

Baseline functions for reducing variance: usually constant in RL
○ Optimal baseline
○ Advantage: use state valuations as baselines 
○ Actor-critic mechanism

○ Critic NN: estimates state valuations
○ Actor NN: policy network, uses state valuations from actor to compute advantage



Other presentations: much more complex

Based on continuous state, continuous action MDP’s
○ End up with double integrals instead of double summations

Continuous tasks instead of finite-horizon tasks
○ Unbounded trajectories and infinite sums
○ Need ideas like continuity

Start with trajectory formulation
○ Difficult to get intuition for rewards and rewards-to-go formulations

Assume start state can be any state, not a fixed state
○ Need concepts like state occupancy distribution in Markov processes
○ Easy to add to our narrative once simpler formulation is clear

Visualization
○ Unrolled MDP for probabilistic policies
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Gradient of expected return: other formulations

 

t: r0 r1 r2 t: r0 r2r1



Gradient of expected return: other formulations

 

t: r0 r1 r2

t: r0 r1 r2

t: r0 r2r1

t

Formulations (2) and (3) are obviously equivalent:
each reward is multiplied by log prob’s earlier in trajectory and summed


