
CS395T: Foundations of
Machine Learning for
Systems Researchers
Fall 2025

Lecture 9:
Baseline Functions in
Policy Gradient Methods

Game plan for policy gradient lectures

Deterministic and stochastic/probabilistic control
○ Policy network and its parameters q

Basic policy gradient method: REINFORCE
○ Monte Carlo sampling to estimate gradient of expected return
○ Suffers from high variance ® requires many samples

Baseline methods for reducing variance
○ Based on control variates methods from Monte Carlo literature
○ Use advantage in place of reward
○ Actor-critic methods

Trust-region methods for improving stability and sample efficiency
○ Ensure updates to q are small
○ Trust Region Policy Optimization (TRPO): KL-divergence
○ Proximal Policy Optimization (PPO): bounding box around current values

Control variates
in

Monte Carlo Methods

Review: Monte Carlo Integration (I)

Reinterpret forward-Euler
Generate xi values using arithmetic progression
Take average of f(xi) values and multiply by (b-a)

a bx1 x2 x3
𝑏 − 𝑎
𝑁

x

f(x)

Monte Carlo integration (capital letters for random variables)
 Generate Xi values by sampling uniform distribution U(a,b)
 Take average of f(Xi) values and multiply by (b-a)

a bx1x2 x3
x

f(x)

x4

Review: Monte Carlo Integration (II)

fmin fmax

N=1
N=20

N=100

Convergence in probability

If f has high variance, need lots of samples to obtain accurate estimate

Unbiased estimator

Baseline Functions for Reducing Variance

1

f(x)

g(x)

0

E[f(x)]

U ~ [0,1]
x

Optimal Baseline

1

f(x)

g(x)

0

E[g(x)]

U ~ [0,1]
x

g(x) is a baseline for f(x)

Baselines
in

Policy Gradients

Key steps

Expectation
over

trajectories

MDP DAG

Trajectory formulation

Samples

Monte Carlo sampling

Advantage

Rewards-to-go formulation
Baselines for variance reduction

REINFORCE

Bellman iteration

Actor-critic method

pq
t

pq

e

S0

S0

S0

Review: policy gradient and REINFORCE

S
0

S1 STA0

pq(A0|S0)*P(S0,A0,S1)

A1

pq(A1|S1)*P(S1,A1,S2)
……..t:

Barto & Sutton REINFORCE:
- samples are episodes
- compute state valuations for all states

Review: example

Bellman:

Trajectories:

p0,r0

p2,r2p1,r1

S0

q ¬ q + hÑq V(S0)

t1 t2

Gradient of expected return: other formulations

t: r0 r1 r2

t: r0 r1 r2

t: r0 r2r1

t

Formulations (2) and (3) are obviously equivalent:
each reward is multiplied by log prob’s earlier in trajectory and summed

Proof: trajectory and rewards formulations equivalent

Vt
q

Vt+1
q

V0
q

S0

VT
q

Sa

Sb
rk

pk(1) ……

……

pk(2) pk(n)

qk(1) qk(2) qk(m)

ek

Example

Sample gradient and variance

Intuition for q updates in REINFORCE

Claim: R(t) > 0: update to q makes t more probable
 R(t) < 0 : update to q makes t less probable

pq(t)
e

R(t)

Inefficiency in REINFORCE

R(t) > 0: trajectory becomes more probable
R(t) < 0 : trajectory becomes less probable

pq(t1)
t1

R(t1) = 10

pq(t2)
t2

R(t2) = 2

Gradient ascent should converge to q that maximizes pq(t1)

However, whenever t2 is sampled, it pulls pq to itself since R(t2) > 0.

Result: q updates are noisy, and convergence is slow.

Intuitively, REINFORCE has no memory of past samples except to extent they are incorporated implicitly into pq

Intuitive idea of constant baseline

R(t) > 0: trajectory becomes more probable
R(t) < 0 : trajectory becomes less probable

pq(t1) t1

R(t1) = 10

pq(t2)

t2

R(t2) = 2

Idea: subtract a constant b(aseline) between 2 and 10 (say 5) from both rewards.

Now t2 has negative reward so it repels probabilities while t1 still attracts probabilities

Result: q updates are less noisy, and convergence is faster

If b > 10 or b < 2, variance increases!

Question: is there an optimal baseline value for reducing variance of gradient estimates?

One guess: optimal b = (Rmax - e) where e is some small constant (turns out to be wrong!)

R(t1) = 5

R(t2) = -3

Two main results (I)

Point: updates to q for gradient ascent do not change if we introduce a constant baseline.

Two main results (II)

Advantage

In practice, we use V(S) as baseline
 • It too is convex combination of Q values
 • Intuition: V(S) is like class average in relative grading

Intuition: using V(S) as a baseline adds “history-sensitivity” to
gradient updates. If we sampled better trajectories at S the
last few times we visited S, reduce gradient update from
current sample.

 Some implementations approximate A(S,ai) by TD(0) error

 A(S,ai) ≈ r(S,ai,S’) + γV(S′)−V(S)

S

Q(S,a1)

Q(S,a2)

Q(S,a3)
V(S)

A(S,ai) = Q(S,ai) – V(S)

a1

a2

a3

pq(ai|S)

Approximation
to Q(S,ai)

S

Q(S,a1)

V(S)

a1

a2

a3

pq(ai|S) S’
r(S,ai,S’)

• Advantage A(S,ai) = Q(S,ai) – V(S)

Actor-critic mechanism

Actor NN updates q by gradient ascent using V values estimated by the critic

Critic NN estimates V values which serve as baseline

Calculate TD error
Update the value function
Update policy parameters

Approximation to Advantage(St,At)

Sutton & Barto REINFORCE with Value Baseline

Update the policy parameter θ using rewards (advantage)-to-go
Update the Value NN parameter w

Calculate advantage

From Sutton & Barto

Experiments

Baseline reduces variance, allowing
REINFORCE with baseline to converge faster.

Key concepts covered in lecture

Control variate method for reducing variance in Monte Carlo sampling
○ In RL, usually only constant baseline functions

Basic policy gradient method: REINFORCE
○ Trajectory formulation, rewards, rewards-to-go
○ Sample gradients
○ Monte Carlo sampling to estimate gradient of expected return
○ Suffers from high variance ® requires many samples

Baseline functions for reducing variance: usually constant in RL
○ Optimal baseline
○ Advantage: use state valuations as baselines
○ Actor-critic mechanism

○ Critic NN: estimates state valuations
○ Actor NN: policy network, uses state valuations from actor to compute advantage

Other presentations: much more complex

Based on continuous state, continuous action MDP’s
○ End up with double integrals instead of double summations

Continuous tasks instead of finite-horizon tasks
○ Unbounded trajectories and infinite sums
○ Need ideas like continuity

Start with trajectory formulation
○ Difficult to get intuition for rewards and rewards-to-go formulations

Assume start state can be any state, not a fixed state
○ Need concepts like state occupancy distribution in Markov processes
○ Easy to add to our narrative once simpler formulation is clear

Visualization
○ Unrolled MDP for probabilistic policies

References

Lil’Log: Policy Gradient Algorithms: long blog post on policy gradient algorithms. Well-written.
○ https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory, Algorithms, and
Implementations, Matthias Lehmann. Considers continuous state, continuous action MDPs so lots of double
integrals!

○ https://arxiv.org/pdf/2401.13662

Variance Reduction in Policy Gradient, David Rosenberg NYU-CDS DS-GA 3001 lecture notes. Approaches
subject from data science/statistics perspective.

○ https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf

Deep Reinforcement Learning, Sergey Levine, CS 285 Berkeley. Course by one of the leaders in the field.
○ https://rail.eecs.berkeley.edu/deeprlcourse/

OpenAI Spinning Up. Introduction to Policy Optimization. Has links to libraries and systems resources.
○ https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://arxiv.org/pdf/2401.13662
https://arxiv.org/pdf/2401.13662
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://davidrosenberg.github.io/ttml2021fall/bandits/6.PG-variance-reduction.pdf
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

Gradient of expected return: other formulations

t: r0 r1 r2 t: r0 r2r1

Gradient of expected return: other formulations

t: r0 r1 r2

t: r0 r1 r2

t: r0 r2r1

t

Formulations (2) and (3) are obviously equivalent:
each reward is multiplied by log prob’s earlier in trajectory and summed

